Running Tensorflow with Nvidia Docker
In this post you’ll learn how to use nvidia-docker with Tensorflow.
Pulling the Tensorflow GPU Image
Use the correct image based on your CUDA version:
- CUDA 8.0 use
tensorflow/tensorflow:latest-gpu
- CUDA 7.5 use
tensorflow/tensorflow:1.0.0-rc0-gpu
Test nvidia-smi
nvidia-docker run --rm tensorflow/tensorflow:latest-gpu nvidia-smi
That’s it! Now your ready to run your Tensorflow code.
Example Dockerized Tensorflow Project using GPU
1) Create a DockerfileFROM tensorflow/tensorflow:latest-gpu
COPY . /app
WORKDIR /app
2) Create app.pyimport tensorflow as tf
sess = tf.Session(config=tf.ConfigProto(log_device_placement=True))
# You should see the following output
# ...
# I tensorflow/core/common_runtime/gpu/gpu_device.cc:885] Found device 0 with properties:
# name: GeForce 940M
# │major: 5 minor: 0 memoryClockRate (GHz) 1.176
# ...
3) Build a running nvidia-dockernvidia-docker -t example_tf_gpu .
nvidia-docker run -it example_tf_gpu python app.py